در طول تاریخ بسیاری در مورد اهرام مصر گفته و نوشته اند. روایت«هرودوت»از نحوه ساخته شدن اهرام و روایت«پلیندیالدا»درباره اینکه چه کسانی اهرام را ساخته اند، خواندنی است.
اما چیزی که بیشتر از همه جذاب است، نسبت های عددی است که در ساخت اهرام از آن استفاده شده؛ نسبت هایی که هنوز کسی از چگونگی ورودشان به اهرام مصر اطلاع دقیقی ندارد.
نظریه بازی ( Game Theory) شاخهای از ریاضیات کاربردی است که در علوم اجتماعی و به ویژه در اقتصاد، زیستشناسی، مهندسی، علوم سیاسی، روابط بینالملل، علوم کامپیوتر، بازاریابی و فلسفه مورد استفاده قرار گرفته است. نظریه بازی در تلاش است توسط ریاضیات رفتار را در شرایط راهبردی یا بازی، که در آنها موفقیت فرد در انتخاب کردن وابسته به انتخاب دیگران میباشد، بدست آورد.
Googol هم اسم مستعار یک عدد است که توسط «میلتون سیروتا» نامگذاری شده است.
عدد مذکور «ده به توان صد» است(به بزرگی این عدد دقت کنید) انتخاب گوگل جنبه شعاری دارد.به این مفهوم که گوگل قصد دارد تا سرویسها و خدمات و اهداف خود را به تمام جهان گسترش دهد. به عدد «ده به توان ده به توان صد» گوگل پلکس(Googolplex) میگویند. و به عدد «ده به توان ده به توان ده به توان صد»گوگل دوپلکس (Googolduplex) میگویند.
یکی از کهن ترین متون ریاضی کشف شده جهان، قطعه پاپیروسی موسوم به پاپیروس " ریند " است که تصویر آنرا در شکل ملاحظه می کنید. این قطعه پاپیروس که یکی از مهمترین یافتههای باستانشناسی مرتبط با ریاضیات محسوب می شود، اطلاعات بسیار ارزشمندی را از ریاضیات مصر باستان در اختیار ما گذاشته است.
این قطعه پاپیروس طومار مانند كه تقریباً 30 سانتیمتر عرض و 5/5 متر طول دارد در مقبرهای در شهر باستانی تِبس در ساحل شرقی رود نیل كشف شد. قدمت این قطعه پاپیروس كه مطالب آن به خط تصویری (هیروگلیف) نوشته شده به 1650 سال پیش از میلاد باز میگردد.
بر روی این پاپیروس، نخستین نمادهای مورد استفاده توسط بشر برای نمایش عملیات ریاضی را میتوان مشاهده كرد. به عنوان مثال در آن زمان علامت جمع را به شكل یك جفت پا نشان میدادند كه جهت حركت آنها به سوی عددی بود كه باید با عدد قبلی جمع بسته میشد.
در سال 1858 میلادی یك حقوقدان و مصرشناس اسكاتلندی به نام" الكساندر هنری ریند " در یكی از سفرهایی كه به مصر داشت، این قطعه پاپیروس را در بازار شهر قدیمی لوكسور در جنوب مصر خریداری كرد. سرانجام چند سال بعد یعنی در سال 1864 موزه بریتانیا این پاپیروس را از ریند خرید و اكنون نیز از آن در همین موزه نگاهداری میشود.
مطالب این پاپیروس شامل مسائلی در حساب، جبر، هندسه و نیز مطالبی در مورد كاربرد ریاضیات در نقشهبرداری، ساختمانسازی و حسابداری است.
یكی از مسائل جالب مطرح شده در این پاپیروس، مسأله شماره 79 ام آن است. صورت این مسأله چنین است:
"هفت نفر هركدام هفت گربه دارند. هر گربه میتواند هفت موش را بگیرد. هر موش میتواند هفت خوشه گندم را بجود و هر خوشه گندم، هفت دانه گندم میدهد. مجموع همه این آدمها، گربهها، موشها، خوشهها و دانههای گندم چقدر است؟"
به بیان امروزی میتوان گفت كه این مسأله درواقع مسأله تعیین مجموع جملات یك تصاعد هندسی با قدر نسبت 7 است و نشان می دهد مصریان باستان از گذشته های بسیار دور با تصاعدهای هندسی آشنا بوده اند.
در ریاضیات نوار موبیس از به به هم چسباندن دو انتهای یک نوار بطوریکه یک نیم چرخش در نوار داده باشیم بدست می آید.
نوار موبیوس در حین سادگی از نظر ساخت به صورت عملی خواص حیرت آوری دارد ،
این نوار مستقلا و به طور جداگانه توسط دو ریاضیدان آلمانی به نامهای August Ferdinand Möbius و
Johann Benedict در سال 1858 کشف و به ثبت رسید.
خواص نوار موبیوس:
نوار موبیوس مثالی از یک سطح جهت ناپذیر در ریاضیات است ،یعنی نوار موبیوس سطحی است که یک رو دارد. از خواص حیرت آور این نوار آنست که این نوار فقط یک مرز دارد. در ابتدا مرز یک ناحیه در فضا را تعریف می کنیم :
مرز یک ناحیه همان طور که از تعریفش پیداست خط جدا کننده آن ناحیه از ناحیه دیگر می باشد در ریاضیات برای یک سطح سه مفهوم تعریف میشود.
1-نقطه داخلی : نقطه ای که بتوان آن را داخل یک دایره روی سطح محصور کرد . 2- نقطه خارجی:نقطه ای است که بتوانیم دایره حول آن رسم کنیم که متعلق به آن سطح نباشد. 3-نقطه مرزی: نقطه است که هر دایره ای حول آن رسم شود قسمتی از آن متعلق به سطح و قسمت دیگر آن متعلق به خارج آن سطح باشد.
با این تعریف نوار موبیوس فقط یک مرز دارد.یعنی با یکبار حرکت در کرانه های انتهای نوار تمام مرز آن را میتوانیم طی کنیم.
برای آزمایش میتوانید این کار را با یک دایره ای که از وسط سوراخ شده است تکرار کنید،در این حالت برای پیمودن مرزهای این سطح باید از روی دو دایره عبور کنیم.
نوار موبیوس خواص غیر منتظره دیگری نیز دارد ،
به عنوان مثال هر گاه بخواهیم این نوار را در امتدادد طولش ببریم به جای اینکه دو نوار بدست نیاوریم یک نوار بندتر و با دو چرخش بدست میاوریم.
همچنیین با تکرار دوباره این کار دو نوار موبیوس در هم پیچ خورده بدست می آید.
با ادامه این کار یعنی بریدن پیاپی نوار و در انتهای کار تصاویر غیر منتظره ای ای ایجاد میشود که به حلقه های پارادرومویک(paradromic rings) موسومند.
همچنین اگر این نوار را از یک سوم عرض نوار ببریم در این حالت دو نوار موبیوس در هم گره شده با طولهای متفاوت بدست می آوریم.
تبادل لینک
هوشمند برای
تبادل لینک
ابتدا ما را با
عنوان یک فنجان
علم...! و
آدرس paradox-.LXB.ir
لینک
نمایید سپس
مشخصات لینک
خود را در زیر
نوشته . در صورت
وجود لینک ما در
سایت شما
لینکتان به طور
خودکار در سایت
ما قرار میگیرد.